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Abstract The benchmark investment strategy of a pension fund typically consists of a

number of benchmark categories, each of which is assigned a weight in the overall

investment budget. In this paper we assume that the benchmark strategy is given, and

determine a model for its optimal active implementation. Active implementation involves a

number of investment managers each of whom are assigned a specific benchmark

category. We present a mean–variance approach to determine, for each investment

manager, the optimal budget as well as the fraction of that budget that can be used for

deviations from the benchmark. The emphasis is on robustness of the optimal allocation

with respect to parameter misestimation, and on consistency in terms of risk-return

preferences between active implementation and benchmark investment strategy.
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Introduction
In the context of asset liability management

(ALM), two types of investment decisions

can be distinguished:

1. The choice of the ALM benchmark

investment strategy: passive risk

management.

2. Tactical and operational investment

decisions: active risk management.

The ALM benchmark yields the allocation of

the total investment budget over the different

benchmark categories such as equity, bonds,

real estate, etc. Usually, this allocation is given

in (monetary) weights. Since for a pension

fund the match between assets and liabilities is

of utmost importance, benchmark weights

are typically determined by means of large-

scale simulation models, see for example

Boender (1997). Practical implementation of

the benchmark investment strategy usually

involves several investment managers. Each of

these investment managers is assigned a

specific benchmark category, and is

responsible for part of the total investment

budget. In order to be able to benefit from

short-term opportunities, investment

managers would typically be allowed to spend
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a fraction of the budget assigned to them on

active management, that is deviations from

the benchmark are allowed. They will try

to take advantage of market conditions to

outperform the ALM benchmark and

generate excess return. These deviations from

the benchmark, however, also affect the risk-

return profile of the overall investment

portfolio. Roll (1992), Waring et al. (2000)

and Baierl and Chen (2000) determine the

efficient risk-return frontier for active

investment decisions through Markowitz

mean–variance optimisation.

Our goal is to determine the optimal

active implementation of a given benchmark

strategy. Our approach adds to the literature

in the following sense. First, whereas the

existing literature mainly focusses on the

active weights in isolation, we explicitly

distinguish weights for active and passive

investment decisions, so that the optimal

mean–variance allocation takes into account

possible correlation between excess returns

and benchmark returns. We incorporate

costs for active and passive management, and

introduce a restriction that guarantees

consistency of the active implementation

with the predefined benchmark investment

strategy. Secondly, there is extant evidence in

the literature (eg Best and Grauer, 1991;

Chopra and Ziemba, 1993; Michaud, 1998;

Ceria and Stubbs, 2006) that mean–variance

optimisation is extremely sensitive to

parameter misestimation. Small deviations in

the estimated means and covariances can lead

to large differences in the optimal allocation.

Several approaches have been developed

to successfully mitigate this problem

(eg Goldfarb and Iyengar, 2003; Ceria and

Stubbs, 2006; Schöttle and Werner, 2006).

Kritzman (2006) argues that ‘misallocations’

due to parameter misestimation are only

problematic if they give rise to non-

negligible errors in the return distribution,

and illustrates that estimation errors in

the means not necessarily lead to such

problematic misallocations. We allow for

errors in the covariances as well as in the

means of the excess returns, and show that

parameter uncertainty is particularly relevant

in determining optimal active weights.

Misallocations due to parameter uncertainty

potentially do lead to large differences in the

returns distribution. We therefore draw on

techniques for robust optimisation recently

developed by Ben-Tal and Nemirovski

(1998) and Goldfarb and Iyengar (2003) to

obtain solutions with a pre-specified degree

of robustness with respect to parameter

uncertainty for both the means and the

covariances. We find that because active

management would typically increase

expected return at the cost of higher variance,

robust optimisation significantly decreases the

weights assigned for active management as

compared to nonrobust optimisation, and

leads to non-negligible changes in the returns

distribution of optimal allocation.

Thirdly, determining mean–variance

optimal robust allocations requires

specification of a risk aversion parameter.

As argued above, in an ALM-context,

benchmark weights are typically determined

by means of large-scale simulation models. In

order to guarantee consistency between the

risk-return trade-offs of the benchmark and

of the active investment decisions, we require

the level of risk aversion used to determine

optimal active budgets to be as close as

possible to the level of risk aversion

consistent with the benchmark weights.

The model
Let us start by introducing some notation

and terminology. As discussed in the

introduction, the benchmark investment

strategy would typically consist of a number

of benchmark categories. For the practical

implementation of the strategy, there would

be a number of investment managers and

each of them would be assigned a particular

benchmark category. We denote:

l = the number of categories in the ALM

benchmark strategy
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k = the number of available investment

managers

and

w̄j: weight of category j in the ALM

benchmark, w̄jA[0, 1]

I( j): set of investment managers with

benchmark category j,

I( j)C{1,y, k}

j(i): the benchmark category of

manager i, j(i)A{1,y, l}.

Now, active implementation requires

determination of :

wi: budgetary weight of manager i,

wiA[0, 1]

gi: fraction of budgetary weight of

manager i available for active

management, giA[0, 1].

Our goal in the paper is to determine values

for wi and gi, for i¼ 1,y, k, such that an

optimal trade-off between risk and return is

obtained, with emphasis on robustness of the

optimal allocation with respect to parameter

misestimation. The specific objective

function will be defined in the next section.

In the remainder of this section, we first

specify a number of constraints on the

decision variables. First, we assume that

short-selling of budgets is not allowed, that

is we impose the following restrictions:

wi � 0 for i ¼ 1; . . . ; k (1Þ

0 � gi � 1 for i ¼ 1; . . . ; k (2Þ
Moreover, in order to achieve consistency

with the ALM benchmark strategy, the

budgetary weights allocated to all managers

with benchmark category j should sum up to

the weight of benchmark category j, that isX
i2IðjÞ

wi ¼ �wj for j ¼ 1; . . . ; l (3Þ

In order to determine the total return as a

function of the decision variables, we

distinguish the following random variables:

Ri
a: active return of manager i,

i¼ 1,y, k

�Rj: return of benchmark category j,

j¼ 1,y, l

so that

�Rbm:¼
P

j¼ 1
l w̄j

�Rj: return of the

benchmark

investment strategy

Ri
e:¼Ri

a��Rj(i): excess return of

manager i with

respect to his

benchmark category

Ri:¼(1�gi)�Rj(i)þ giRi
a: return generated by

manager i.

Now, the total return can be written as:

Rtotðw; gÞ ¼
Xk

i¼1

wiRi;

¼
Xk

i¼1

wiðði ¼ giÞ �RjðiÞ þ giR
a
i Þ;

¼
Xk

i¼1

wi
�RjðiÞ þ

Xk

i¼1

giwiR
e
i

(4Þ

¼ �Rbm þ
Xk

i¼1

giwiR
e
i (5Þ

where the last equality follows from the fact

that (3) implies that in the absence of active

management, that is when gi¼ 0 for all i, the

total return of the investment strategy is

equal to the return of the ALM benchmark

strategy.

Now only the cost function remains to be

specified. The cost of active as well as passive

management is usually assumed to be

proportional to the budgets assigned for

active and passive management, respectively

(eg Scherer, 2002). Let us denote ai (and bi)

for the cost per dollar of active (and passive)

management for manager i, and

a¼ (a1,y, ak) and b¼ (b1,y, bk), where

bi¼ b̄j for all iAI(j). Then, the total cost of

van Hest and De Waegenaere
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active and passive management equals:

Fðw; gÞ ¼
Xk

i¼1

aigiwi|ffl{zffl}
active fee

þ bið1 � giÞwi|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
passive fee

2
64

3
75

¼
Xk

i¼1

ðai � biÞgiwi þ
Xl

j¼1

�bj �wj

(6Þ
where the second equality follows from (3).

Mean–variance optimisation
To determine the optimal weights for active

and passive management, we consider a

mean–variance approach where a trade-off is

made between:

1. The expected total return, corrected

for the cost of active and passive

management.

2. The risk of the total return, as measured

by the variance.

Our optimisation problem differs from the

standard Markowitz mean–variance

optimisation problem in the sense that we

explicitly distinguish weights for active and

passive investment decisions, incorporate

costs for active and passive management, and

introduce a restriction that guarantees

consistency with the predefined benchmark

investment strategy. Specifically, the optimal

weights of active and passive management are

found by solving the following optimisation

problem:

ðw	; y	Þ 2 arg maxfE½Rtotðw; gÞ�
� lV ½Rtotðw; gÞ� � Fðw; gÞg

s:t: ð1Þ; ð2Þ and ð3Þ
(7Þ

where lZ0 represents the degree of risk

aversion. Note that the total return Rtot(w, g)
and the cost function F(w, g) depend only on

the weights for active management, giwi, and

not on the budgetary weights wi and the active

fractions gi separately. Let us therefore introduce

~wi:¼giwi

for the active weight of manager i, i¼ 1,y, k.

Then,

E½Rtotðw; gÞ� ¼ ð1; ~w 0Þ � m (8Þ

V ½Rtotðw; gÞ� ¼ ð1; ~w 0Þ � O � 1

~w

� �
(9Þ

Fðw; gÞ ¼ ð1; ~w 0Þ � cost (10Þ

where (1, w̃0) denotes the row vector

(1, w̃1,y, w̃k), m denotes the column vector

containing the expected return of the

benchmark investment strategy mbm and the

expected excess returns of the investment

managers, ai¼E[Ri
e], that is

m¼ (mbm,a1,y,ak)
0, O denotes the

corresponding covariance matrix, that is

O ¼
V ð �RbmÞ sð �Rbm; Re

1Þ � � � sð �Rbm; Re
kÞ

sðRe
1
�RbmÞ V ðRe

1Þ � � � sðRe
1; Re

kÞ
..
. ..

. . .
. ..

.

sðRe
k
�RbmÞ sðRe

k; Re
1Þ � � � V ðRe

kÞ

2
66664

3
77775

and cost¼ (
P

j¼ 1
l b̄jw̄j, a1�b1,y, ak�bk)

0

denotes the column vector containing the cost

of passive management (first element) and the

costs of active management in excess of passive

management for the k investment managers.

Note that the first element in the weight

vector (1, w̃0) corresponds to a weight of

100 per cent in the benchmark strategy.

The existing literature mainly focuses on the

allocation of active risk budgets in isolation,

that is the benchmark return is left out of

consideration (eg Waring et al., 2000; Roll,

1992). It is clear however from (9) that, if the

benchmark return and the returns of active

management are correlated, the overall risk

may be under- or overestimated if active risk

budgets are determined in isolation from the

passive investment strategy. By explicitly

including the benchmark return in (9), the

optimal allocation of active and passive

weights takes into account possible

correlation between excess returns and

benchmark returns.

Benchmark investment strategy of a pension fund
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Now, given (8)–(10), optimisation

problem (7) is equivalent to the following

quadratic optimisation problem:

~w	 2 arg max

(
ð1; ~w 0Þ � ðm� costÞ

�l � ð1; ~w 0Þ �O �
1

~w

� �)

s:t:

P
i2IðjÞ ~wi � �wj; j¼ 1; . . . ; l;

~wi � 0; i¼ 1; . . . ;k

�
(11Þ

Optimisation problem (11) allows to

determine the optimal values of the

weights for active management, w̃	. Then,

budgetary weights w and active fractions g
can be determined such that (1), (2), and (3)

are satisfied with w̃i
	¼giwi for i¼1,y, k.

Robust and consistent
risk allocation
Determination of the optimal active weights

as in optimisation problem (11) obviously

requires the mean vector m and the

covariance matrix O to be known. In

practice, however, these parameters would

typically be unknown. The optimal portfolio

would then be determined on the basis of

estimators such as for example the maximum

likelihood estimator. There, however, exists

extant evidence in the literature that mean-

variance optimisation can be extremely

sensitive to parameter misestimation (see eg

Best and Grauer, 1991; Chopra and Ziemba,

1993; Michaud, 1998; Ceria and Stubbs,

2006). This implies that when the optimal

weights would be determined on the basis of

the maximum likelihood estimators, these

weights could be highly suboptimal with

respect to the true parameter values, and

could potentially lead to significant

differences in the returns distribution.

We argue that this problem is particularly

relevant in a context where optimal weights

for active management need to be

determined, because it is unlikely that,

for a given investment manager, data would

be available for a large number of years.

We show how the approach developed by

Goldfarb and Iyengar (2003) can be applied

to obtain robust optimal active risk budgets.

Then a risk aversion parameter l remains to

be specified. We determine the parameter

such that overall risk management, active and

passive, is consistent with the long-term

strategic goals of the pension fund, as

reflected by the benchmark weights.

The robust optimisation problem

To mitigate the sensitivity of optimisation

outcomes to parameter misestimation,

Ben-Tal and Nemirovski (1998) propose to

introduce uncertainty sets for the unknown

parameters, and to solve the robust

counterpart of the optimisation problem.

This robust counterpart optimises the worst-

case value of the objective function over all

parameter values in the uncertainty set.

Formally, in the case of mean–variance

optimisation, one would determine a set

M � Rkþ1 of potential values of the mean

vector m, and a set S � Rðkþ1Þ�ðkþ1Þ of

potential values for the covariance matrix O,

and solve the following optimisation problem:

~w	2 arg max~w min
ðm;OÞ2M�S

(
ð1; ~w 0Þ�ðm�costÞ:

� lð1; ~w 0Þ �O �
1

~w

� �)

s:t:

P
i2IðjÞ ~wi � �wj; j ¼ 1; . . . ; l;

~wi � 0; i ¼ 1; . . . ; k

�
(12Þ

The uncertainty sets M and S then remains to

be determined. Typically, one would like

these sets to satisfy the following two

requirements:

1. provide an adequate description of

uncertainty and

2. yield efficiently computable solutions.

In this section, we show how the approach

developed by Goldfarb and Iyengar (2003) to

obtain uncertainty sets that satisfy these

van Hest and De Waegenaere
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criteria can be applied to obtain robust

optimal active risk budgets.

Let m̂ and Ô denote the maximum

likelihood estimators of the mean vector and

the covariance matrix, respectively, and

assume that Ô is positive definite. Let us

further assume that the returns of the

underlying benchmark and excess returns of

the k active investment managers follow a

multivariate normal distribution with

unknown parameters �m and �O, that is

ð �Rbm; Re
1; . . . ;R

e
kÞ � Nkþ1ð�m; �OÞ

Following Goldfarb and Iyengar (2003), we

suggest the following choice for the

uncertainty sets M and S1:

M ¼fm : ðm� m̂Þ0 � Ô�1 � ðm� m̂Þ� y2g (13Þ

S¼
n
O :O¼ ÔþD� 0; D¼D0;

k Ô�1=2 �D � Ô�1=2 k b
1�b

o
ð14Þ

This particular choice of uncertainty sets

indeed satisfies the above-mentioned criteria:

1. Adequate description of uncertainty: The

parameters y and b can be chosen such that

the probability that the true mean vector �m
and covariance matrix �O are elements of

their corresponding uncertainty sets is

sufficiently high. Indeed, let y 2 R and

bA[0, 1) be such that

Fw2ðy2Þ ¼ aM (15Þ

FGð1þ bÞ� FGð1� bÞ ¼ ffiffiffiffiffi
aS

kþ1
p

(16Þ

where Fw2 denotes the CDF of a wkþ1
2

distributed random variable and FG denotes

the CDF of a G(Tþ1/2, 2/T�1)

distributed random variable. Then (see

Goldfarb and Iyengar, 2003)

Pð�m 2 MÞ ¼ aM (17Þ

Pð�O 2 SÞ � aS (18Þ

Thus, the probability that the mean–

variance objective with respect to the true

means �m and covariances �O is lower than

the robust mean variance objective with

respect to the estimated parameters m̂ and

Ô is at most 2�aM�aS.

2. Efficiently computable solutions: Optimisation

problem (12) is equivalent to:

~w	 2argmax
~w

(
ð1; ~w 0Þ�ðm̂� costÞ

�y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1; ~w 0Þ�Ô �

1

~w

� �s

� l
1�b

ð1; ~w 0Þ�Ô �
1

~w

� �)

s:t:

(P
i2IðjÞ ~wi� �wj; j¼1;...;l;

~wi�0; i¼1;...;k

(19Þ

Numerical solutions for the optimal robust

allocation of active weights w̃	 can therefore

be computed efficiently using SOCP

(Second Order Cone) optimisation

software (see eg Sturm, 1999).

Note that it follows from (19) that robustness

with respect to uncertainty in the mean

vector (y>0) is achieved by reducing the

expected return with a factor that is

proportional to the standard deviation of the

return. Similarly, robustness with respect to

uncertainty in the covariance matrix (b>0) is

achieved by scaling the variance of the return

by a factor 1/1�b>1. This implies that

increasing the level of robustness is equivalent

to performing mean-variance optimisation

with a higher degree of risk aversion.

Consistency in terms of risk-return

trade-off

In order to determine the robust optimal

active weights in optimisation problem (19),

a risk aversion parameter l needs to be

specified. It is clearly important that the

active and passive implementation of the

benchmark strategy is consistent, in terms of

risk-return trade-off, with the long-term

strategic goals of the pension fund as

Benchmark investment strategy of a pension fund
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reflected by the benchmark weights. We

therefore require the risk aversion parameter

l used in (19) to represent as closely as

possible the degree of risk aversion consistent

with the benchmark weights. To achieve

this, we determine the risk aversion

parameter for which the optimal mean–

variance benchmark weights are as close as

possible (in Euclidian distance) to the actual

benchmark weights w̄¼ (w̄1,y, w̄l).

Determining this ALM-consistent risk

aversion parameter thus requires solving the

following optimisation problem:

min
l2R

UcðlÞ ¼k o	 � �w k2

s:t:

o	 2 arg max UbmðojlÞ

s:t:

Pl
j¼1 oj ¼ 1

oj � 0

(8><
>:

(20Þ

where mbmARl and ObmARl� l denote the

benchmark returns and covariances, and

UbmðojlÞ ¼ o0 � mbm � lo0 � Obm � o
In the technical sense, problem (20) takes the

form of a bi-level optimisation problem,

since the constraint that the weights o	 yield

the optimal risk-return trade-off is an

optimisation problem itself. In general,

bi-level optimisation problems can be hard

to solve due to the nonconvexity of the

feasible area. Efficient algorithms for solving

bi-level optimisation problems have,

however, recently been developed. See for

example Dempe (2002) for an overview.

A numerical illustration

Data

Consider a benchmark that consists of two

categories: a US equity index and a US

government bond index, with weights 25

and 75 per cent, respectively. The expected

returns, standard deviations and covariances

are given in Table 1.

This benchmark ALM investment policy

yields an expected return of 5.75 per cent

with a standard deviation of 8 per cent.

Now consider four active managers: two

with respect to the US equity index and two

with respect to the bond index. Table 2

presents the true expected excess return

(third column), the maximum likelihood

estimator of the expected excess return

(fourth column) and the proportional cost

for active and passive management for each

of the four investment managers. Table 3

presents the true covariance matrix of the

excess returns of the four managers and the

return of the passive benchmark (BM) (left

matrix), as well as the maximum likelihood

estimator of that covariance matrix (right

matrix). The maximum likelihood estimates

m̂ and Ô are based on a sample of 15-years

data, simulated from the true multivariate

normal distribution with mean �m and

covariance matrix �O.

ALM-consistent risk aversion parameter

We now first need to determine the ALM-

consistent risk aversion parameter, that is the

bi-level optimisation problem (20) needs to

be solved for w̄¼ (0.25, 0.75), and mbm and

Obm as given in Table 1. Figure 1 displays

Uc(l), that is the Euclidian distance between

the actual benchmark weights w̄ and the

mean–variance optimal benchmark weights

given the risk aversion parameter l. Since

this objective function is well behaved, the

minimum can be found through an

enumerative procedure.

Table 1 Benchmark strategy

Asset class Weight (%) Expected return (%) Covariances

Equity 25 8 279 25
Bonds 75 5 25 64

van Hest and De Waegenaere
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The optimum of the bi-level optimisation

problem is reached at l¼ 4.4, with

corresponding optimal weights o	 ¼ (0.249,

0.751). These weights minimise the

Euclidian distance to the benchmark weights

w̄ over all mean–variance optimal weights

corresponding to a non-negative risk

aversion parameter l.

Robust vs nonrobust optimisation

Given the true parameters �m and �O in Tables

2 and 3, the optimal consistent allocation of

active weights w̃ can be determined by

solving optimisation problem (11) for the

ALM-consistent risk aversion parameter

l¼ 4.4. The true mean and covariance

matrix is, however, typically not known, and

the optimal allocations would be determined

on the basis of the maximum likelihood

estimators. As noted before, mean–variance

optimisation is highly sensitive to parameter

misestimation. We therefore also analyse the

optimal allocation of active and passive

weights with respect to the maximum

likelihood estimators m̂ and Ô when a certain

degree of robustness is required, and

compare it to the optimal solution that is

obtained when robustness is not taken into

account. Let us first consider the case where

the degrees of robustness as defined in (15)

and (16) equal aM¼ aS¼ 0.8. Table 4

Table 2 Expected excess returns (true and estimated) and proportional costs

Manager Category �m (%) m̂ (%) a (%) b (%)

1 Equity 1.5 1.01 1 0.3
2 Equity 1.0 0.77 0.6 0.3
3 Bonds 0.75 0.70 0.45 0.25
4 Bonds 0.50 0.30 0.5 0.25
BM 5.75 5.90

Table 3 Covariance matrix (true and estimated)

�Xi, j 1 2 3 4 BM X̂i, j 1 2 3 4 BM

1 25 8 3 1.3 �1 1 13 3 1 0 �1
2 8 16 1.2 3 16 2 3 19 �1 5 17
3 3 1.2 9 4.5 7.2 3 1 �1 9 4 2
4 1.3 3 4.5 6.3 0 4 0 5 4 8 �2
BM �1 16 7.2 0 64 BM �1 17 2 �2 68

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Risk aversion parameter(λ)

U
C

Figure 1 The function Uc(l)
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presents the optimal allocation w̃	 for the

true parameters, as well as the optimal

nonrobust allocation w̃nr
	 from (11), and the

optimal robust allocation w̃r
	 from (19) for

the estimated parameters m̂ and Ô .

Comparison of the nonrobust and the

robust allocation as given in Table 4 yields

the following observations:

� The nonrobust allocation overallocates 50

per cent active weight (73 vs 23 per cent).

The robust allocation overallocates

only 11 per cent active weight (34 vs

23 per cent).

� The robust solution allocates relatively

more active weight to the fourth manager

and relatively less active weight to the first

manager, because the former provides

more diversification with the benchmark.

These observations are related to the fact that

requiring a certain degree of robustness is

equivalent to increasing the level of risk

aversion, as can be seen from (19). As a

consequence, diversification among active

managers and with respect to the benchmark

becomes more important.

Table 5 compares the expected total

return E[Rtot]¼ (1, w̃0) � (�m�cost) and the

standard deviation of the total return

s½Rtot� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1; ~w 0Þ � �O � 1

~w

� �q
given the true

mean and the true covariance matrix of the

three optimal allocations given in Table 4,

and of the benchmark allocation, that is

w̃¼ 0 (last column).

Note first that the true optimal allocation

w̃	 outperforms the benchmark, because

active management allows to increase the

expected return without increasing the

variance. The nonrobust allocation for the

estimated parameters, w̃nr
	 , overallocates active

weight, and leads to an allocation that is too

risky. Since the robust allocation w̃r
	

overallocates active weight to a lesser extent,

the corresponding performance is much

closer to the optimal one.

Sensitivity analysis

The above comparison between the

nonrobust and the robust allocation already

indicates that robust optimisation implies that

there is more emphasis on diversification,

and, as a consequence, the optimal allocation

would typically be less risky. Clearly, this

effect will depend to a large extent on the

degrees of robustness aM and aS. Figure 2

displays the expected total return

(1, w̃0) � (�m�cost) (right axis, solid line) and

the total active fraction
P

i¼ 1
k w̃i (left axis,

dashed line) for the optimal robust allocation,

as a function of aM, the level of robustness

with respect to errors in the expected excess

returns. The level of robustness with respect

to uncertainty in the covariance matrix is

set equal to aS¼ 0.
Increasing the level of robustness with

respect to errors in the mean vector leads to a

lower expected total return and less active

weight. Note the sharp decrease in active

weight and in expected return when the

robustness level aM is slightly increased from

0 to 5 per cent.2 Introducing a modest level

of robustness (a value of aM close to 0)

implies non-negligible changes in the

expected return. This illustrates that in our

setting, contrary to the setting described in

Kritzman (2006), the effect of parameter

Table 5 Comparison of optimal nonrobust and
robust solutions

True
(w̃=w̃*)
(%)

Nonrobust
(w̃=w̃nr*)
(%)

Robust
(w̃=w̃r*)
(%)

BM
(w̃=0)
(%)

E[Rtot] 5.94 6.65 5.98 5.75
s[Rtot] 8.00 8.47 8.01 8.00

Table 4 Optimal allocation for �l and �X, nonrobust
and robust allocation for l and X̂.

Manager w̃* (%) w̃nr* (%) w̃r* (%)

1 5 25 9
2 0 0 0
3 0 31 0
4 18 17 25
Aggregate 23 73 34
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misestimation on the distribution of the

returns can be substantial.
Figure 3 displays the standard deviation of

the total return

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1; ~w 0Þ � �O � 1

~w

� �q
(right

axis, solid line) and the total active fractionP
i¼ 1
k w̃i (left axis, dashed line) for the

optimal robust allocation, as a function of aS,

the level of robustness with respect to errors

in the covariance matrix. The level of

robustness with respect to errors in the mean

vector is set equal to aM¼ 0. An increasing

robustness level yields a more risk-averse

attitude and therefore less active weight. The

‘infeasible’ area in Figure 3 indicates the

levels of robustness that are not possible to

achieve.3 With four managers and a data

sample of 15 years, the maximal achievable

robustness level equals aS¼ (FG(2))5¼ 88 per

cent. The feasible area is smaller in case of

small sample sizes and/or a large number of

available managers. For example, a historical

sample of 10 years (and four managers)

implies a robustness confidence level of 71

per cent. If also a fifth manager is available

(and a sample of 10 years), the maximum

robustness level for uncertainty with

respect to the covariances is approximately

85 per cent.

Performance of robust optimum

The example shows that robust allocation

typically leads to lower weights for active

management. Question remains however

on whether the optimal allocation obtained

through robust optimisation outperforms

the one obtained through nonrobust

optimisation. The answer to this question

obviously depends on the performance

criterion. We illustrate this in Figure 4,
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which yields the simulated cumulative

probability distribution with respect to

the true mean �m and covariance matrix �O
of the return generated by the nonrobust

optimal weights (solid line) and by the robust

optimal weights (dashed line). We see that

robust optimisation implies that the

probability of unfavourable returns is lower

than with nonrobust optimisation, and the

converse holds for very favourable returns.

Finally, we illustrate how robust

optimisation affects the location of the

optimal risk-return outcome on the efficient

frontier.

Figure 5 displays the efficient frontier of

active and passive management. First, note

that the combination of the benchmark

return (8 per cent) and standard deviation

(5.75 per cent) is not an element of the

efficient frontier, because allowing for active

management yields mean–variance solutions

that dominate the benchmark. The figure

illustrates how the level of robustness affects

the trade-off between return and risk. The

boxes correspond to consistent and robust

optimal risk budgeting solutions calculated

with the ALM-consistent risk-aversion

parameter l¼ 4.4, for different robustness

levels aM and aS. Higher levels of robustness

lead to less-risky active allocations and a

lower expected total return.

Conclusion
We developed a framework that allows

optimal robust and consistent active
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implementation of a pension fund’s given

benchmark investment strategy. The mean–

variance optimisation approach incorporates

weights for active as well as passive

management, and takes into account the

different fees for active and passive

management. In order to guarantee

consistency between the risk-return

trade-offs of the benchmark and of the

active investment decisions, we choose the

level of risk aversion to be as close as possible

to the level of risk aversion consistent with

the benchmark weights. Then, we draw on

the recent literature on robust optimisation

to determine optimal active implementations

that are less sensitive to parameter

misestimation. We find that, because

requiring a certain degree of robustness is

equivalent to increasing the level of risk

aversion, robust optimal active

implementation would typically lead to a

significantly lower weight for active

management.

Notes

1. The norm 8A8 in (14) equals k A k :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i l
2
i ðAÞ

q
, where

li(A) denote the eigenvalues of A. Moreover, we use the

notation AZ0 to indicate that A is positive semi-definite.

2. It follows from (19) that robustness implies that the

expected return is reduced with a factor y times the

standard deviation of the return, where y2 satisfies

y2 ¼ ðFw2 Þ�1ðaM Þ. It can be verified that ðFw2 Þ features a

sharp increase for low values.

3. Since in (14) b is required to be strictly less than 1, it

follows from (16) that the maximum level of robustness

with respect to uncertainty in the covariance matrix equals

aS ¼ ðFGð2ÞÞkþ1
.
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